Prerequisites: Setting Up LinkedIn MCP Server

Before creating your workflow, you need to connect your LinkedIn account through an MCP server.

Step 1: Configure LinkedIn MCP Server

  1. Navigate to MCP Settings: Go to your Dume AI menu and locate the MCP Server section Screenshot 2025-07-22 at 2.05.08 AM.png
  2. Add LinkedIn Integration: Follow the detailed setup instructions at https://docs.dume.ai/mcp_server to connect LinkdIn MCP remote server from Composio.
  3. Authenticate Your Account: Complete the OAuth flow to connect your LinkedIn profile
  4. Test Connection: Verify that the LinkedIn MCP server is properly connected and accessible
Once your LinkedIn MCP server is configured, you’re ready to build the workflow.

Building the LinkedIn Post Workflow

Step 2: Create the Input Node

  1. Add Input Node: Drag an Input Node onto your workflow canvas Screenshot 2025-07-22 at 2.07.23 AM.png
  2. Configure Input Parameters:
    • Field Name: post_topic (Type: Text, Required: Yes)
    • Field Name: tone (Type: Dropdown, Options: Professional, Casual, Enthusiastic, Required: Yes)
    • Field Name: target_audience (Type: Text, Required: No)
    • Field Name: key_points (Type: Text, Required: No) Screenshot 2025-07-22 at 2.07.51 AM.png
  3. Add Description: “Provide the topic and tone for your LinkedIn post”

Step 3: Create the Hook Generator LLM Node

  1. Add LLM Node: Place an LLM Node and connect it to the Input Node
  2. Node Configuration:
    • Name: “Hook Generator”
    • Model: Select “Dume AI Chat”
    • Prompt:
Create 2-3 engaging hook lines for a LinkedIn post about: {string INPUT/post_topic}

Tone: {string INPUT/tone}
Target Audience: {string INPUT/target_audience}

Make the hooks attention-grabbing and professional. Focus on creating curiosity or providing value.
  1. Output Schema: Keep default (single string output) Screenshot 2025-07-22 at 2.11.23 AM.png

Step 4: Create the Body Content Generator LLM Node

  1. Add Second LLM Node: Place another LLM Node connected to the Input Node
  2. Node Configuration:
    • Name: “Body Content Generator”
    • Model: Select “Dume AI Chat”
    • Prompt:
Write engaging LinkedIn post body content about: {string INPUT/post_topic}

Tone: {string INPUT/tone}
Key Points to Include: {string INPUT/key_points}
Target Audience: {string INPUT/target_audience}

Make it informative, engaging, and suitable for LinkedIn's professional audience. Keep it concise but valuable.
  1. Output Schema: Default string output Screenshot 2025-07-22 at 2.11.52 AM.png

Step 5: Create the Hashtag & CTA Generator LLM Node

  1. Add Third LLM Node: Place another LLM Node connected to the Input Node
  2. Node Configuration:
    • Name: “Hashtag & CTA Generator”
    • Model: Select “Dume AI Chat”
    • Prompt:
Generate 5-8 relevant hashtags and a compelling call-to-action for a LinkedIn post about: {string INPUT/post_topic}

Tone: {string INPUT/tone}
Target Audience: {string INPUT/target_audience}

Format:
Hashtags: #hashtag1 #hashtag2 #hashtag3...
CTA: [Your call-to-action here]
  1. Output Schema: Default string output Screenshot 2025-07-22 at 2.12.30 AM.png

Step 6: Create the Post Refiner LLM Node

  1. Add Fourth LLM Node: Place an LLM Node that connects to all three previous LLM nodes
  2. Node Configuration:
    • Name: “Post Refiner”
    • Model: Select “Dume AI Chat”
    • Prompt:
Combine and refine these LinkedIn post components into a cohesive, professional post:

Hook: {string Hook_Generator/answer}
Body: {string Body_Content_Generator/answer}  
Hashtags & CTA: {string Hashtag_CTA_Generator/answer}

Requirements:
- Ensure smooth flow between sections
- Optimize for LinkedIn's algorithm
- Keep professional tone
- Make sure the post is engaging and valuable
- Final post should be ready to publish
  1. Output Schema: Default string output Screenshot 2025-07-22 at 2.13.07 AM.png

Step 7: Add the LinkedIn Publishing Tool Node

  1. Add Tool Node: Place a Tool Node connected to the Post Refiner Screenshot 2025-07-22 at 2.13.51 AM.png
  2. Node Configuration:
    • Name: “LinkedIn Publisher”
    • Integration: Select your configured LinkedIn MCP Server
    • Tool: Choose “Create LinkedIn Post” (or equivalent tool name)
    • Message/Instructions:
Publish this LinkedIn post: {string Post_Refiner/answer}
  1. Parameters: The tool should automatically map the post content from the Post Refiner output

Step 8: Add the Output Node

  1. Add Output Node: Place an Output Node connected to the Tool Node
  2. Configure Output Variables:
    • Field Name: original_topic → Map to {string INPUT/post_topic}
    • Field Name: generated_post → Map to {string Post_Refiner/answer}
    • Field Name: publish_result → Map to {string LinkedIn_Publisher/result}
    • Field Name: post_url → Map to {string LinkedIn_Publisher/post_url} (if available)
  3. Description: “LinkedIn post generation and publishing results”

Testing Your Workflow

Step 9: Test the Complete Flow

  1. Save Your Workflow: Give it a descriptive name like “LinkedIn Post Creator”. It also auto saves in every 10 seconds.
  2. Test Run: Click the test button and provide sample inputs:
    • Post Topic: “The future of AI in marketing”
    • Tone: “Professional”
    • Target Audience: “Marketing professionals and business owners”
    • Key Points: “Efficiency, personalization, data-driven insights”Screenshot 2025-07-22 at 2.15.28 AM.png
  3. Verify Results: Check that each node produces expected outputs and the final LinkedIn post is published successfully on the LinkedIn page.

Pro Tips

  • Add Note Nodes: Include documentation for complex logic or team collaboration
  • Error Handling: Consider adding Condition Nodes to handle potential API failures
  • Customization: Adjust prompts based on your brand voice and industry
  • Testing: Always test with different topics and tones before deploying
Your LinkedIn post creation workflow is now complete and ready to automate your content creation process!